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Optimization of Smith-Purcell radiation at very high energies
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A theoretical analysis of Smith-Purcell radiation at very high energies is presented. The energy per unit
frequency and solid angle is expressed in closed form as a function of the grating geometry, beam energy, and
viewing angles. A certain choice of grating geometry is shown to optimize the output energy for a particular
order of radiation. Scaling laws are derived for the energy emitted into all orders of radiation in the relativistic
limit. It is shown that the total energy emitted into each order scales as the three-halves power of the beam
voltage.

PACS number~s!: 41.60.Cr, 41.75.Ht
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I. INTRODUCTION

The interaction of an electron beam with a metal grat
and the emission of radiation was first reported by Smith
Purcell in 1953@1# and continues to attract interest becaus
offers the possibility of a compact and efficient method
generating a high-power, tunable source of radiation, part
larly in the far infrared. Emphasis in this communication
on the high-energy limit of the Smith-Purcell~SP! mecha-
nism. In particular the conditions required for strong peak
of the intensity in the beam direction will be identified.

Previous theoretical work on SP radiation falls rough
into one of two categories. The first utilizes a plane-wa
diffraction formalism suggested by Toraldo di Francia@2#
and developed by van den Berg@3#. A number of variations
on this theme can be found in the literature. An analysis
finite conductivity strip gratings is provided by Petit an
Tayeb @4#. Others have modeled the scattering of pla
waves from arrays of conducting bars, including Rubin a
Bertoni @5# and Shiao and Peng@6#. In this approach the
electromagnetic fields are expanded in terms of Fourier i
grals and infinite matrix equations containing the amplitu
of excitation of various plane waves are truncated and so
in approximate fashion. At small angles this scheme bre
down. This difficulty arises because an increasingly la
number of terms must be incorporated as the angle is
creased to maintain convergence and numerical instab
results. This is a well known limitation of the theory and o
that is recognized by its practitioners. ‘‘We have restrict
our calculations to observation angles@u.45°# where reli-
able convergence of the numerical solution of the integ
equations was obtained’’@7#.

The second approach is based on the approximatio
diffraction theory employing the Huygens-Kirchhoff inte
grals. Chapter 9 of Jackson’s textbook on electrodynam
contains a discussion of these techniques@8#. This work
originated nearly at the same time as that of di Francia
particular, two authors, Bolotovskii and Voskresenskii, an
lyzed the SP radiation produced by a charged particle p
ing over a perfectly conducting strip grating using the sca
Kirchhoff theory@9#. The result of their calculation@Eq. ~34!
PRE 611063-651X/2000/61~6!/7057~8!/$15.00
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of @9## for the spectral intensity of the SP radiation agre
precisely with the result found in the work of Brownellet al.
@Eq. ~11! of @11##. This result is analyzed here to determin
the experimental parameters that produce maximum
emission. It is rederived here for the convenience of
reader with an emphasis on the physical assumptions of
theory and the intuitive nature of the model.

Forward directed emission of SP radiation was first ve
fied in experiments performed using a 2.8 MeV/c electron
beam interacting with a 1 cm period grating at the
Brookhaven National Laboratory@10#.

We have recently developed a theory describing SP ra
tion by considering the surface charge induced on the gra
by the charge passing over the grating and ‘‘dragged’’ alo
with it. This approach is described in detail in@11# and has
the advantage of being physically intuitive and mathem
cally tractable. It will be shown here that the peak of S
radiation is expected for precisely the angular range exclu
by diffraction theory analysis and that higher-energy bea
are capable of producing more narrowly focused and gre
energy SP output than low-energy beams.

The image current theory provides a formula for the sp
tral distribution of the emitted energy in terms of the bea
and grating parameters. Figure 1 illustrates the propertie
the grating under consideration. A strip grating is conside
rather than an echelle or lamellar grating, for example,
eliminate the added complications of varying the depth
grooves in the grating. It will be shown that the broad fe
tures of the results of the analysis are changed only slig
due to the more complicated diffraction efficiency of oth
grating types. The variables defining our case are as follo
The charge of the particle passing over the grating isq. The
speed of the particle isbc. The impact parameter of th
charge with respect to the grating isb. The anglesu andf
locate the direction toward an observer in the far field w
respect to the beam direction. The grating has total lengtL
and periodl, and is composed of strips having widths. The
subsequent analysis demonstrates an optimal choice of
rameters to generate SP radiation and scaling laws for
angular distribution of the radiation and the energy genera
with beam energy.
7057 ©2000 The American Physical Society
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II. DERIVATION OF INTENSITY PROFILE

The electromagnetic waves radiated by a system of
rents carry energy into different directions. The total ene
per unit frequency and solid angle is related to the expres
for current density by the following@8#:

d2I

dv dV
5

v2

4p2c3 U E E dt dxW û3@ û3JW~xW ,t !#eiv[ t2û•xW /c]U2

~1!

whereû5 x̂ sinu cosf1ŷsinu sinf1ẑcosu is the unit vec-
tor from the point of integrationxW to the point of observation
and the integration is performed over all time and space. T
expression should be considered a function ofû and fre-
quency. The strip grating is periodic inz and the currents are
generated by the source charge which travels with velo
bcẑ. The distribution of image charge on the strip grating

FIG. 1. Strip grating geometry showing the grating periodl,
strip widths, impact parameterb, and chargeq moving at speedbc.
The observer is oriented using the standard spherical coordinau
andf relative to thez axis.

FIG. 2. Illustration showing the distribution of image charge
the strip grating for high energy where the ‘‘footprint’’ is confine
to a single strip. The three contours indicate the locations where
charge density is equal to 20%, 10%, and 0.4% of the maxim
value. In this example,g520.0. A high-energy beam (g.100)
induces an extremely narrow footprint.
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shown schematically in Fig. 2. Therefore, we can descr
the total current as the sum over the current in each strip

JW~xW ,t !5 (
m51

N

JW toothS xW2mlẑ,t2
ml

bcD . ~2!

The general form of the Smith-Purcell radiation spectru
can be derived without specifying the exact expression
JW tooth . Interchange the order of summation and integrat
in Eq. ~1! and change the coordinates of integration for ea
term in the sum usingxW85xW2mlẑ andt85t2ml/(bc). It is
found that

d2I

dv dV
5

v2

4p2c3U (
m51

N

eiv[ml/(bc)2û• ẑml/c]JWU2

, ~3!

where

JW 5E
2`

`

dxE
2`

`

dyE
2`

`

dzE
2`

`

dtû

3@ û3JW tooth~xW ,t !#eiv[ t2û•xW /c] , ~4!

and the primes have been dropped immediately after ma
the substitution. Sinceuz1z2u25uz1u2uz2u2 we have

d2I

dv dV
5

v2

4p2c3
uJW u2K, ~5!

where

K5U (
m51

N

r mU2

, ~6!

a geometric series, andr 5exp@(ivl/c)(1/b2cosu)#. The se-
ries has the well known closed form expression,

K5
sin2@~vNl/2c!~1/b2cosu!#

sin2@~v l /2c!~1/b2cosu!#
. ~7!

Equation~7! contains the frequency envelope of the SP
diation. The full width at half maximum output in frequenc
can be expressed as

Dv5
1

N

4c

l S 1

b
2cosu D 21

. ~8!
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FIG. 3. Strip grating geometry showing the relationship betwe
the length of the gratingL, the waist diameter of the beam 2r 0, and
the impact parameterb.
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PRE 61 7059OPTIMIZATION OF SMITH-PURCELL RADIATION AT . . .
If the grating has many periods thenK sharpens into a serie
of d functions:

K →
N@1

(
nÞ0

vL

unu l
d~v2vn!. ~9!

This forces the spectrum to resolve into a set of discrete l
according to the ‘‘Smith-Purcell relationship’’:

vn[
2punucb

l ~12b cosu!
. ~10!

We can integrate the energy per frequency per solid an
over frequency to yield the total energy per solid angle:

dI

dV
5E

0

` v2

4p2c3
uJW u2Kdv. ~11!

The d function form of the frequency spectrum allows th
integral to be performed by inspection. At this point, we c
incorporate the precise form of the image current derived
the Appendix. Using the Smith-Purcell relationship to elim
nate vn and incorporating the expression for the ‘‘tran
formed’’ image currentuJW u2, we have

dI

dV
5

2q2N

p l

b3sin2u

~12b cosu!3

3 (
nÞ0

expS 2
4punubA11~gb sinu sinf!2

g l ~12b cosu!
DG,

~12!

where the dependence of the radiation on the partic
choice of grating has been separated out by definingG
[sin2(punus/l). For lamellar or sinusoidal gratings, for ex
ample, the above expression fordI/dV would be altered
only in the form ofG. This result is a special case of th
more general theory derived in Eq.~11! of @11#. The energy
distribution function is similar to those derived for other r
diative processes such as transition radiation@12# and Ceren-
kov radiation@8#.

The polarization of the SP radiation varies as a function
observation angle. An observer looking along the direct
(u,f) sees radiation with wave vector parallel toû. The
magnetic field is directed alongB̂5 ẑ3û. The electric field is
polarized in the plane ofû and ẑ. For example, radiation
directed alongu590° andf50° hasÊ52 ẑ, B̂5 ŷ, and k̂

5 x̂.

III. OPTIMIZATION OF RADIATED ENERGY

The energy emitted per solid angle is a complicated fu
tion of seven variables. The question arises, then, of how
optimize the SP radiation by judicious choice of grating g
ometry. Intuitively, a number of features can be noted. B
cause this model does not include the effects of the radia
fields back on the source charge, the charge is not acc
ated. Therefore, a longer grating will result in greater outp
However, there is a practical limit to the useful length
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grating due to the nonzero divergence angle of any beam
the absence of focusing fields. The exponential damp
term in the expression for the emitted energy requires, in
pendent of all other considerations, thatf50 to maximize
output. The remaining terms must be chosen to make
argument of the exponential small. Therefore, the impact
rameterb will be chosen to bring the beam as close to t
grating as possible. The energy of the beam, and hencg,
should be large. However, the angular expression in the f
factor, sin2u/(12b cosu)3, will force the maximum of the
radiation at high energy to small angles. It will be shown th
the interplay between these two effects results in a sim
analytic expression for the global optimum.

With a rough conceptual understanding of the issues
volved in optimizing the SP radiation, a rigorous analytic
derivation can be performed. Let us assume the followi
The total length of the grating,L, is chosen so that a beam
that has radiusr 0 at the middle of the grating expand
enough to begin to intercept the grating at the leading e
due to a finite beam emittancee. In a drift space, an emit-
tance dominated beam expands according to@13#

r ~z!25r 0
21~z2z0!2e2/r 0

2 . ~13!

We assume that the beam is placed close to the gratin
maximize the output,b5r 0A2. Figure 3 illustrates the rela
tionship of emmitance for the length of the grating and t
impact parameter. In practiceb will be a multiple of r 0 of
order unity that will depend on the precise beam dens
profile and the tolerance of the grating for intercepting hig
energy electrons. For the present discussion we simply
this factor for convenience without significant loss of gen
ality. We find thatL52r 0

2/e. The normalized emittanceeN

[egb characterizes the electron source. And so, alter
tively,

L5b2gb/eN . ~14!

For convenience, introducex[cosu and break up the serie
into terms as follows:

dI

dV
5 (

nÞ0

dIn

dV
5

q2

eN
(
nÞ0

f n~x,f!. ~15!

The total energy per solid angle emitted from the st
grating is the sum of energy emitted in various terms
described by Eq.~12!. How may these contributions be de
noted? In traditional microwave tube nomenclature a parti
lar ‘‘mode’’ of output corresponds to a particular frequen
and spatial output pattern, e.g., the TE01 rectangular wave-
guide mode at 17.14 GHz. In the case of SP radiation, wh
each angle of observation corresponds to a different
quency of emission, some care needs to be taken with lab
Following diffraction grating nomenclature, each term in t
summation will be referred to as a particular ‘‘order’’ of S
radiation. Each order consists of energy emitted into diff
ent wavelengths, and therefore angles, in accordance with
Smith-Purcell relationship. The functional dependence of
nth order on beam energy, grating geometry, and observa
direction is contained within the ‘‘form factor’’:
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f n~x,f!5
2b2gb4

p l 2

~12x2!

~12bx!3

3expS 2
4punubA11g2b2~12x2!sin2f

g l ~12bx!
D

3sin2S punus
l D . ~16!

IV. OPTIMIZATION OF A SELECTED ORDER

Assume that a particular ordern̄ has been chosen to b
optimized. A set of parameters$f n̄ ,u n̄ ,sn̄ ,l n̄% may be found
that will maximize the form factorf n̄ . The anglef appears
only in the exponent and, clearly,f50 will maximize the
output. Similarly, the strip widths appears only in the
sin2(pun̄us/l) term and has an optimal valuesn̄5 lp/(2un̄u)
wherep is an odd integer. According to the definition of th
strip width s, we must haves< l . Therefore,p<2un̄u. For
example, un̄u53 implies that pP$1,3,5%. Equation ~16!

evaluated forn5n̄ reduces to

f n̄~x,f50!5
2b2gb4

p l 2

~12x2!

~12bx!3
expS 2

4pun̄ub
g l ~12bx!

D .

~17!

The grating period must be chosen to maximize the ou
energy. Set the derivative of the form factor with respectl
to zero,] f n̄ /] l[0. This yieldsl 52pbun̄u/@g(12bx)#. The
optimum period depends on the emission angle of inter
Substituting this expression forl into f n̄ we have

f n̄5
e22

2p3

g3b4

un̄u2
~12x2!

~12bx!
. ~18!

Take the derivative off n̄ with respect tox to optimize overu
and solve the resulting quadratic equation. The two soluti
are xn̄,65b216Ab2221 but the only acceptable solutio
has an absolute value less than or equal to 1 due to
definition of x:

u n̄5cos21SAg21

g11D →
g@1A2

g
. ~19!

It should be noted that, for extremely high energies,
angle of the peak output is close to zero and becomes d
cult to separate from the beam unless a bending magn
utilized downstream. A blazed grating can be used to tilt
angle of the peak radiation back slightly. Blazed gratin
will be treated in future publications. Substitution of th
angle into the expression for the optimum period fixes
grating geometry:

l n̄52pbun̄u and sn̄5ppb. ~20!

At this point in the analysis we can ‘‘close the circle’’ b
using Eqs.~19! and ~20! in the previous expressions whic
were functions of these variables. By virtue of the Smi
ut

t.
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Purcell relationship between angle and frequency, we
compute the wavelength of radiation corresponding to
peak output atu n̄ ,

l n̄52pb/~gb!. ~21!

The width of the surface current footprint isb/g, implying a
spectral bandwidth of approximatelyg/b. Therefore, this re-
sult also represents the minimum wavelength that this de
can generate.

A self-consistency check can be made for the assump
that the number of grating periods is large,N@1. Because
the grating lengthL is simply N times the period of the
grating, l n̄52pbun̄u, we find that

Nn̄5
L

l
5

b

eN

gb

2pun̄u
, ~22!

where the subscript reflects the dependence of the total n
ber of periods in the optimized grating on the choice of ord
n̄. For a typical high-brightness beam with normalized em
tance on the order of 1p mm mrad and beam size~and there-
fore impact parameter! on the order of 10mm, we find that
N'g@1.

V. OTHER ORDERS

The strip grating geometry has been chosen to maxim
the production of a particular order of SP radiation,n̄. How-
ever, radiation will be produced for all ordersn<21. What
are the values ofu andf that maximize the output for order
other thann̄? Inserting the optimized grating period and str
width, the expression forf n(x,f) becomes

f n~x,f!5
gb4

2p3un̄u2
~12x2!

~12bx!3

3expF2
2nA11g2b2~12x2!sin2f

n̄g~12bx!
G

3sin2S p

2

n

n̄
pD . ~23!

As before we immediately note thatf50. The angleu
can be determined, using] f n /]x[0. This yields a cubic
equation inx,

S 32
2

g

n

n̄
D b2~213b2!x1S 11

2

g

n

n̄
D bx21b2x350.

~24!

For the strongly relativistic case,g@n/n̄ we find the
asymptotic solution

un'u n̄An

n̄
. ~25!

The maximum value off n(xn ,f50) in this limit is approxi-
mately
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f n~xn ,f50!'
e22

2p3
b2g2~g21!sin2S p

2

n

n̄
pD . ~26!

These expressions become exact for all values ofg whenn

5n̄. The angle at which thenth order is maximized can b
substituted back into the Smith-Purcell relationship to der
the angular frequency of the SP radiation for each ordervn
5cg/b in the high-energy limit. Furthermore, knowing th
number of periods in the grating, we are in a position
deduce the width in frequency of each order using the
pression in Eq.~8!:

Dvn54
n̄

n

ceN

b2
. ~27!

VI. ANGULAR DISTRIBUTION OF RADIATION

The next question concerns the angular distribution of
radiation. We expect, crudely, that at high energy,g@1, the
radiation of each order will become a narrow cone inu and
f. What is the total energy emitted in each order? Does
energy increase with beam energy? Figures 4 and 5 show
variation of the form factor withu andf for beams of sev-
eral energies. The energy is maximized at smaller angles
higher energy as expected from Eq.~25!. As expected, the
energy is also maximized atf50.

Introduce the following variables to denote the positio
of the half-output points. The implicit definition of the hal
output pointfn,1/2 is f n(xn ,fn,1/2)5 1

2 f n(xn,0). This equa-
tion can be solved analytically. Using the small angle a
proximation, appropriate in this case,

fn,1/2'0.64g21/2An̄

n
. ~28!

Twice this value yieldsDfn . The two half-output points
along u are defined similarly byf n(xn

6 ,f50)5 1
2 f n(xn ,f

FIG. 4. A plot of the form factor at constantf50 for u from 0

to 180° for the case ofn5n̄51, p51, andg52.0, 20.0, and 200.0
e

-

e

is
he

or

s

-

50) wherexn
2P@0,xn# and xn

1P@xn ,p#. The full width at
half maximum ~FWHM! is Dun5@cos21(xn

1)2cos21(xn
2)#.

We find that

Dun'1.3g21/2An

n̄
. ~29!

The solid angle subtended by each lobe isDVn
'sinunDunDfn ,

DVn'2.4g23/2An

n̄
. ~30!

The total energy in each lobe is«n'(q2/eN) f n(xn ,f
50)DVn or

«n'0.01g3/2
q2

eNn2
sin2S p

2

n

n̄
pDAn

n̄
. ~31!

Evidently, the radiant energy increases with the 3/2 powe
the beam energy. The variation in energy with order is su
that the maximum output is obtained for the case ofn5n̄
5p51. The energy oscillates with increasing order but
bounded above byn23/2. Depending on the choice ofn̄ and
p, an odd integer less than 2un̄u, the magnitudes of the ener
gies in the various orders will be altered accordingly.

As with any periodic radiator, the minimum resolution
Dl/l'1/N. Because of the SP dispersion relationship
angular width of the radiated energy lobe described by
~29! corresponds to a spectral width ofDl/l'1.8g22. In
practice the larger of these two linewidths will dominate d
pending on the particular parameters of the beam source
ing utilized.

The average power produced by a continuous current
be approximated by recognizing that the radiation produ
by individual charges sums incoherently when the plas
wavelength of the beam is much larger than the wavelen
of the Smith-Purcell radiation. In this case the net ene
production scales linearly with the number of radiators~as

FIG. 5. A plot of the form factor at constantu ~that yielding the

peak output! for f from 0 to 90° for the case ofn5n̄51, p51,
andg52.0, 20.0, and 200.0.
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TABLE I. SP radiation from existing or planned accelerators.

Facility
Dukea TUMb CIRFELc SDALINACd BNL-ATFe LCLSf

@14# @15# @16# @17# @18# @19#

Energy~MeV! 1.2 3 14 38 50 14350
eN ~p mm mrad! 3.5 5 20 2 1 1.5
r 05b/A2 (mm) 250 100 350 50 25 0.5
sz ~mm/ps! 0.3/1 3000/104 3.0/10 1.2/4 0.6/2 0.02/0.067
I ~A! 20 0.5 200 1.5 50 3400
l ~mm! 2.2 0.89 3.1 0.44 0.22 0.009
s ~mm! 1.1 0.44 1.6 0.22 0.11 0.004
N 51 30 110 420 560 4200
l (mm) 700 130 110 5.9 2.3 0.0003
Dl/l 0.16 0.038 0.009 0.002 0.002 0.0002
u ~deg! 43 30 15.1 9.3 8.1 0.48
DV ~mSr! 390 130 16 4 2 531024

P ~mW! 0.5 0.026 22 7.0 710 1.53108

aThe Mark III Free Electron Laser Linear Accelerator Driver.
b3 MV Van de Graaff accelerator at the Physics Department of the Technical University, Munich.
cThe compact infrared free electron laser.
dThe Superconducting Darmstadt Linear Accelerator.
eThe Brookhaven National Laboratory Accelerator Test Facility.
fThe Linac Coherent Light Source.
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opposed to quadratically as would be the case with cohe
radiation from a single macrocharge!. The power produced is
the product of the rate at which charges pass the grating
the energy produced by each charge,Pn5I«n /q.

It should be noted that the output power does not sc
with the canonical figure of merit, the ‘‘normalized bea
brightness’’ BN5I /(pen)2. Instead, the power is propor
tional to current divided by normalized emittance to the fi
power. This relationship is a consequence of the geometr
the Smith-Purcell effect. The beam-grating coupling dro
exponentially with the impact parameter of the charges b
transverse displacement has no effect. By Liouville’s th
rem, the total phase space area subtended by the bea
conserved. However, the components of the normali
emittance,eNx and eNy , are not conserved individually
Therefore, it is possible to ‘‘squeeze’’ a round beam into
elliptical cross section in order to increase the vertical be
brightness at the expense of the transverse brightness
deed, the Smith-Purcell effect is naturally suited to a sh
beam geometry.

To provide a quantitative sense of these results, Tab
lists the operating parameters of a number of existing
planned accelerators. The parameters of each electron b
are the beam kinetic energy, normalized emittance, rad
nt

nd

le

t
of
s
a
-

is
d

n
m
In-
et

I
r
am
s,

bunch length, and peak current. The calculated quantities
the grating period and strip width, the number of periods
the grating, the peak wavelength of the output, the angle
maximum emission, the solid angle subtended by the m
lobe of radiation, and the peak power produced.

VII. CONCLUSIONS

A theoretical analysis of Smith-Purcell radiation from
perfectly conducting strip grating has been presented.
energy per unit frequency and solid angle was derived
certain choice of grating geometry was shown to optim
the output energy for a particular order of radiation. In t
highly relativistic limit, it has been shown that the ener
emitted in each order scales as the 3/2 power of the b
energy. It has also been shown that the emitted energ
focused into a narrow cone at high energy, emerging at
angle close to the direction of the beam. The optimal para
eters for SP radiation are summarized in Table II.
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TABLE II. Summary of SP optimization for a given ordern̄.

Grating l n̄52pbun̄u sn̄5ppba
Nn̄5bgb/(2peNun̄u)

Angles un5cos21@A(g21)/(g11)An/n̄ fn50 DVn'2.4g23/2An/n̄
Output vn5cgb/b ln52pb/(gb) Dvn54ceN(n̄/n)/b2

Energy «n'0.01g3/2(q2/eNn2)sin2@(p/2)(n/n̄)p#An/n̄
Power Pn5I«n /q

ap is an odd integer such thatp<2un̄u.



b

d

e
e

ov

io
sid
t

n
te

d
y

a

n
ity

’’
r

t in
-
er

ind

r

o a

t

PRE 61 7063OPTIMIZATION OF SMITH-PURCELL RADIATION AT . . .
APPENDIX: DERIVATION OF THE TRANSFORMED
IMAGE CURRENT

The induced surface current on the grating is computed
first considering a chargeq at a distanceb above a perfectly
conducting plane. A surface charge develops that is
scribed by

s~y,z!52
1

4p

2qb

~b21y21z2!3/2
. ~A1!

If the charge trajectory isrW(t)5bx̂1bctẑ and the conduc-
tivity of the metal is infinite, then the image charge mov
accordingly. The standard relativistic substitutions are us
t85g(t2bcz) and z85g(z2bct). Also, since s is the
charge per unit area and the dimension of length alongẑ is
Lorentz contracted,s→gs. A Dirac d function describes
the confinement of the current to the surface,x50:

JW~x,y,z,t !52~bcẑ!
d~x!2qgb/~4p!

@b21y21g2~z2bct!2#3/2
.

~A2!

For the problem at hand, the charge is assumed to travel
a grating composed of strips of widths arranged with peri-
odicity l. It is assumed that the image current in this situat
is that calculated for the uninterrupted metal plane con
ered above where metal is present in strips and zero in
gaps between the metal regions. This is accomplished
defining a functiongtot(z) that is zero in the gaps betwee
strips and unity on the strips. Using the unit Heaviside s
function Q(z), define

g~z;a,b!5Q~z2a!2Q~z2b!

5H 1 if a,z,b

0 if z,a or z.b.
~A3!

The grating hasN strips and the individual strips are indexe
by m which runs from 1 toN. The grating is described b
gtot(z)5(m51

N g(z;ml,ml1s). The final expression for the
system of source currents due to the passage of the ch
over the strip grating is

JW~x,y,z,t !52gtot~z!~bcẑ!
d~x!2qgb/~4p!

@b21y21g2~z2bct!2#3/2
.

~A4!

Figure 2 illustrates the shape of the induced surface curre
By comparison with the definition for the current dens
contribution from each tooth, we have
y

e-

s
d:

er

n
-

he
by

p

rge

ts.

JW tooth~xW ,t !52~bcẑ!g~z;0,s!
d~x!2qgb/~4p!

@b21y21g2~z2bct!2#3/2
.

~A5!

This result permits the computation of the ‘‘transformed
image currentJW defined in Eq.~4!. The cross products facto
out of JW and reduce touû3û3 ẑu25uû3 ẑu25sin2u. After
performing the trivial x integration, and substitutingt
5g(bct2z),

JW 5û
qb

2p
sinuE

2`

`

dyE
2`

`

dzE
2`

`

dt
g~z;0,s!

~b21y21t2!3/2

3expF iv

c S t

gb
1

z

b
1y sinu sinf1z cosu D G , ~A6!

neglecting an overall complex phase which has no effec
the calculation ofuJW u2. This relatively complicated expres
sion simplifies rapidly upon recognizing the integration ov
y as that of a modified Bessel function of the second k
@20#:

JW 5û
sin2u sinfqbv

pc
E

0

s

dzexpS ivz

bc
~12b cosu!D

3E
2`

`

dt
K1„~v/c!sinu sinfAb21t2

…

Ab21t2
expS 2

ivbt

gbc
D .

~A7!

The remaining integrations overz andt separate, the forme
yielding a simple exponential over the interval@0,s# and the
latter another modified Bessel function which reduces t
simple exponential function,K1/2(z)5e2zAp/(2z). At the
end of the calculations we find

uJW u25
4q2b2c2

v2

sin2u

~12b cosu!2
sin2S vs~12b cosu!

2bc D
3expS 2

2b

le
D , ~A8!

where the evanescent length scale is defined byle
21

[(v/gbc)A11(gb sinu sinf)2. Physically, the evanescen
length scale comes fromkx5 ile

21 , the component of the
wave vector perpendicular to the grating.
ry
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