PHYSICAL REVIEW E VOLUME 61, NUMBER 6 JUNE 2000

Optimization of Smith-Purcell radiation at very high energies
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A theoretical analysis of Smith-Purcell radiation at very high energies is presented. The energy per unit
frequency and solid angle is expressed in closed form as a function of the grating geometry, beam energy, and
viewing angles. A certain choice of grating geometry is shown to optimize the output energy for a particular
order of radiation. Scaling laws are derived for the energy emitted into all orders of radiation in the relativistic
limit. It is shown that the total energy emitted into each order scales as the three-halves power of the beam
voltage.

PACS numbds): 41.60.Cr, 41.75.Ht

I. INTRODUCTION of [9]] for the spectral intensity of the SP radiation agrees
precisely with the result found in the work of Browneli al.

The interaction of an electron beam with a metal gratingEq. (11) of [11]]. This result is analyzed here to determine
and the emission of radiation was first reported by Smith andhe experimental parameters that produce maximum SP
Purcell in 1953 1] and continues to attract interest because itemission. It is rederived here for the convenience of the
offers the possibility of a compact and efficient method ofreader with an emphasis on the physical assumptions of the
generating a high-power, tunable source of radiation, particutheory and the intuitive nature of the model.
larly in the far infrared. Emphasis in this communication is  Forward directed emission of SP radiation was first veri-
on the high-energy limit of the Smith-Purcd6P mecha- fied in experiments performed using a 2.8 Me\électron
nism. In particular the conditions required for strong peakingpeam interacting wit a 1 cm period grating at the
of the intensity in the beam direction will be identified. Brookhaven National LaboratofyL0].

Previous theoretical work on SP radiation falls roughly = We have recently developed a theory describing SP radia-
into one of two categories. The first utilizes a plane-wavetion by considering the surface charge induced on the grating
diffraction formalism suggested by Toraldo di Frang®] by the charge passing over the grating and “dragged” along
and developed by van den Bdrg|]. A number of variations with it. This approach is described in detail ibl] and has
on this theme can be found in the literature. An analysis othe advantage of being physically intuitive and mathemati-
finite conductivity strip gratings is provided by Petit and cally tractable. It will be shown here that the peak of SP
Tayeb [4]. Others have modeled the scattering of planeradiation is expected for precisely the angular range excluded
waves from arrays of conducting bars, including Rubin andby diffraction theory analysis and that higher-energy beams
Bertoni [5] and Shiao and Penf$]. In this approach the are capable of producing more narrowly focused and greater
electromagnetic fields are expanded in terms of Fourier inteenergy SP output than low-energy beams.
grals and infinite matrix equations containing the amplitude The image current theory provides a formula for the spec-
of excitation of various plane waves are truncated and solvettal distribution of the emitted energy in terms of the beam
in approximate fashion. At small angles this scheme breakand grating parameters. Figure 1 illustrates the properties of
down. This difficulty arises because an increasingly largehe grating under consideration. A strip grating is considered
number of terms must be incorporated as the angle is deather than an echelle or lamellar grating, for example, to
creased to maintain convergence and numerical instabilitgliminate the added complications of varying the depth of
results. This is a well known limitation of the theory and onegrooves in the grating. It will be shown that the broad fea-
that is recognized by its practitioners. “We have restrictedtures of the results of the analysis are changed only slightly

our calculations to observation angle&>45°] where reli-  due to the more complicated diffraction efficiency of other
able convergence of the numerical solution of the integrabrating types. The variables defining our case are as follows.
equations was obtained'7]. The charge of the particle passing over the grating ishe

The second approach is based on the approximation tepeed of the particle igc. The impact parameter of the
diffraction theory employing the Huygens-Kirchhoff inte- charge with respect to the gratinghbs The anglesy and ¢
grals. Chapter 9 of Jackson’s textbook on electrodynamickocate the direction toward an observer in the far field with
contains a discussion of these techniqli8s This work  respect to the beam direction. The grating has total lehgth
originated nearly at the same time as that of di Francia. Irand period, and is composed of strips having wicdhThe
particular, two authors, Bolotovskii and Voskresenskii, ana-subsequent analysis demonstrates an optimal choice of pa-
lyzed the SP radiation produced by a charged particle passameters to generate SP radiation and scaling laws for the
ing over a perfectly conducting strip grating using the scalaangular distribution of the radiation and the energy generated
Kirchhoff theory[9]. The result of their calculatiofEq. (34)  with beam energy.
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FIG. 3. Strip grating geometry showing the relationship between
the length of the grating, the waist diameter of the beam and
the impact parametds.

shown schematically in Fig. 2. Therefore, we can describe
the total current as the sum over the current in each strip,

y

N
N - - ~ ml
FIG. 1. Strip grating geometry showing the grating perlpd J(x,t)= E Jmoth(x—mlz,t— E) 2
strip widths, impact parametds, and charge moving at speegc. m=1

The ob is oriented using the standard spherical diaat . .
@ observer IS onented using the standard spherical coordinatesr, general form of the Smith-Purcell radiation spectrum
and ¢ relative to thez axis. . . o .
can be derived without specifying the exact expression for

Il. DERIVATION OF INTENSITY PROFILE jtooth- Interchange the order of summation and integration

, ) in Eq. (1) and change the coordinates of integration for each
The electromagnetic waves radiated by a system of cur- in th g = %—mlzandt’ =t—ml/ It
rents carry energy into different directions. The total energ)}ermd'nth (tesum using’ =x—mizandt’=t—ml/(5c). Itis
per unit frequency and solid angle is related to the expressiowun a

for current density by the followingg8]:
d?l

2 2 N 2
.2 dl @ D eiw[ml/(Bc)fJ-%ml/c]j{ , 3)
=
dewdQ 4723

dodQ 4723 | &=

L. |2
f Jdtd?(ﬂx[ﬂxj(i,t)]eiw[t—u-x/c]
(1  where

whereuzxS|n¢.9c05gt?+y3|n¢?5|fl¢+zcos¢? is the unit vec- j:f dxf dyJ dzf a4t
tor from the point of integration to the point of observation —o —o —o —o
and the integration is performed over all time and space. This

expression should be considered a functionuoéind fre-

quency. The strip grating is periodic irand the currents are and the primes have been dropped immediately after making
generated by the source charge which travels with velocit¥he substitution. Sinckz;z,|2= |2,|%|z,|2 we have

,Bci. The distribution of image charge on the strip grating is

X[UX Jygou(X,t)Jeielt-uxic] (4)

d?l w?

10 S 7 V-

8 dew dQ 477-2c3|j| . ©
y6— where

4 N 2

2 k=2, (6)

m=1

0 2 4 | 26 8 | 10
-2 a geometric series, and=exf (iwl/c)(1/8—cosh)]. The se-
e ries has the well known closed form expression,
= U L L L L - SIMPL(oNI/20)(1/B —cos)] -
_8_ = .
0 sir’[ (wl/2¢)(1/8—cosh)]

FIG. 2. lllustration showing the distribution of image charge on E.qu_atlon(7) contams the frequen.cy envelope .Of the SP ra-
the strip grating for high energy where the “footprint” is confined diation. The full width at half maximum output in frequency
to a single strip. The three contours indicate the locations where th2n P& expressed as
charge density is equal to 20%, 10%, and 0.4% of the maximum 1
value. In this exampley=20.0. A high-energy beamy(>100) Aw= £4—C(£—cose) ®)
induces an extremely narrow footprint. N | '
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If the grating has many periods thé&hsharpens into a series grating due to the nonzero divergence angle of any beam in

of & functions: the absence of focusing fields. The exponential damping
term in the expression for the emitted energy requires, inde-

N>1 ol pendent of all other considerations, that0 to maximize
K— r;o W&(m—wn). (9 output. The remaining terms must be chosen to make the

argument of the exponential small. Therefore, the impact pa-
This forces the spectrum to resolve into a set of discrete line€@meterb will be chosen to bring the beam as close to the

according to the “Smith-Purcell relationship: grating as possible. The energy of the beam, and hence
should be large. However, the angular expression in the form
27|n|cB factor, sirfa/(1—Bcosé)®, will force the maximum of the
wp= I(l—,8—<:()56)' (10 radiation at high energy to small angles. It will be shown that

the interplay between these two effects results in a simple
We can integrate the energy per frequency per solid anglanalytic expression for the global optimum.

over frequency to yield the total energy per solid angle: With a rough conceptual understanding of the issues in-
volved in optimizing the SP radiation, a rigorous analytical
di © w2 5 derivation can be performed. Let us assume the following:

a0, 477203"71 Kdo. (1)  The total length of the gratind,, is chosen so that a beam

that has radiug, at the middle of the grating expands
enough to begin to intercept the grating at the leading edge
due to a finite beam emittanee In a drift space, an emit-
ance dominated beam expands accordinglLg)

The & function form of the frequency spectrum allows this
integral to be performed by inspection. At this point, we can
incorporate the precise form of the image current derived ir}
the Appendix. Using the Smith-Purcell relationship to elimi- , ) 22
nate w, and incorporating the expression for the “trans- r(z)*=rot(z—2z0)%€/ry. (13
formed” image currentj]z, we have . ,
We assume that the beam is placed close to the grating to
dil 292N B3sint maximize the outputb=r /2. Figure 3 illustrates the rela-
a0 3 tionship of emmitance for the length of the grating and the
(1—pBcosb) impact parameter. In practide will be a multiple ofr, of

4 1+ ; AV ordgr unity that will depend on thg preci_se beam density
X >, exp( - mn[bV1+ (78 sin6siné) , profile and the tolerance of the grating for intercepting high-
nZ0 vl(1— B cosh)

energy electrons. For the present discussion we simply set
(12)  this factor for convenience without significant loss of gener-
ality. We find thatL =2r3/e. The normalized emittancey

where the dependence of the radiation on the particulaseyB characterizes the electron source. And so, alterna-
choice of grating has been separated out by defirthg tively,
=sir?(@in|g/l). For lamellar or sinusoidal gratings, for ex-
ample, the above expression fdi/d{) would be altered L=b%yBley. (14
only in the form of G. This result is a special case of the
more general theory derived in EQ.1) of [11]. The energy  For convenience, introduce=cos6 and break up the series
distribution function is similar to those derived for other ra- jnto terms as follows:
diative processes such as transition radiafi#f] and Ceren-
kov radiation[8]. di dli q

The polarization of the SP radiation varies as a function of > T =2 > (X, ). (15

observation angle. An observer looking along the direction dQ 770 dQ ey nizo

(6,¢) sees radiation with wave vector parallel to The . . )
etic field is directed alori= 7 &i. The electric field i The total energy per solid angle emitted from the strip
magnetic field is directed alorig=2zxu. ctric field 1s grating is the sum of energy emitted in various terms as

polarized in the plane ofi and z. For example, radiation described by Eq(12). How may these contributions be de-
directed alongg=90° and¢$=0° hase=—z, B=y, andk noted? In traditional microwave tube nomenclature a particu-
=X. lar “mode” of output corresponds to a particular frequency
and spatial output pattern, e.g., the [ Eectangular wave-
Ill. OPTIMIZATION OF RADIATED ENERGY guide mode at 17.14 GH;. In the case of SP radigtion, where
each angle of observation corresponds to a different fre-
The energy emitted per solid angle is a complicated funcguency of emission, some care needs to be taken with labels.
tion of seven variables. The question arises, then, of how t&ollowing diffraction grating nomenclature, each term in the
optimize the SP radiation by judicious choice of grating ge-summation will be referred to as a particular “order” of SP
ometry. Intuitively, a number of features can be noted. Beradiation. Each order consists of energy emitted into differ-
cause this model does not include the effects of the radiativent wavelengths, and therefore angles, in accordance with the
fields back on the source charge, the charge is not accelegmith-Purcell relationship. The functional dependence of the
ated. Therefore, a longer grating will result in greater outputnth order on beam energy, grating geometry, and observation
However, there is a practical limit to the useful length of direction is contained within the “form factor:
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2b2y8* (1—x?) Purcell relationship between an_glg and frequency, we can
fo(X, )= > 3 compute the wavelength of radiation corresponding to the
= (1-Bx) peak output a¥;,
[{ A7|n|by1+ ¥?B%(1—x?)sif ¢ No=2mbl(vB). (21
xXexp —
yI(1=Bx)

The width of the surface current footprintligy, implying a
spectral bandwidth of approximatefyb. Therefore, this re-
sult also represents the minimum wavelength that this device
can generate.

A self-consistency check can be made for the assumption
that the number of grating periods is lardé>1. Because

Assume that a particular order has been chosen to be the grating lengthL is simply N times the period of the
optimized. A set of paramete{sy,, #,S5.15+ may be found  grating,l;=2b|n|, we find that
that will maximize the form factof,,. The anglep appears
only in the exponent and, clearlyyg=0 will maximize the N__L b B 22
output. Similarly, the strip widths appears only in the " ey 2an|’ (22)
sirf(m|n|g/l) term and has an optimal valug=Ip/(2|n|)
wherep is an odd integer. According to the definition of the where the subscript reflects the dependence of the total num-
strip width s, we must haves<I. Therefore,p<2|n|. For  ber of periods in the optimized grating on the choice of order
example, [n|=3 implies that pe{1,3,5. Equation (16) N Fora tyﬁicaldhigh}brightnessdbea(;nbwith nozr(maéiZﬁd emit-

= tance on the order ofiimm mrad and beam siZand there-

evaluated fon=n reduces to fore impact parametgion the order of 1Qum, we find that
) N~y>1.

X sir?

(16)

7r|n|s)

IV. OPTIMIZATION OF A SELECTED ORDER

2b2yB* (1—x2) p( 47|n|b

% =0 = = e 1 a? ™ ™ =%

17 V. OTHER ORDERS
The strip grating geometry has been chosen to maximize

The grating period must be chosen to maximize the outpuhe production of a particular order of SP radiationHow-
energy. Set the derivative of the form factor with respedt to eyer, radiation will be produced for all ordenss — 1. What

to zero,df,/91=0. This yieldsl = 27Tb|a/_[y(1— BxX)]. The  are the values of and ¢ that maximize the output for orders
optimum period depends on the emission angle of intereshiner tham? Inserting the optimized grating period and strip

Substituting this expression farinto f;7 we have width, the expression fof,(x, ) becomes
—zi ﬁ ﬂ (18 f _ 7:84 (1_X2)
"2a® n)2 (1=BX) 0% #)= 273n|? (1-Bx)3
Take the derivative of,, with respect tox to optimize overd 2nV1+ y?B3(1—x?)sirt ¢
and solve the resulting quadratic equation. The two solutions xexpg — ny(1—Bx)
are )gi:ﬁ‘lt VB 2—1 but the only acceptable solution Y
has an absolute value less than or equal to 1 due to the T n
definition of x; X sir? >=p|. (23
n
o= Cos—l( ry—1 yil \ﬁ (19) As before we immediately note that=0. The angled
" y+1 can be determined, usingf,,/dx=0. This yields a cubic

equation inx,
It should be noted that, for extremely high energies, the
angle of the peak output is close to zero and becomes diffi-
cult to separate from the beam unless a bending magnet is (3— —:),8—(2+3,82)X+
utilized downstream. A blazed grating can be used to tilt the n
angle of the peak radiation back slightly. Blazed gratings
will be treated in future publications. Substitution of this

angle into the expression for the optimum period fixes the Forttfj[_e strlors_gly relativistic casey>n/n we find the
grating geometry: asymptotic solution

l;=2wb/n| and sy=pmb. (20) 0.~ Hn—\/i (25)
n

At this point in the analysis we can “close the circle” by
using Eqgs.(19) and(20) in the previous expressions which The maximum value of ,(x,,,=0) in this limit is approxi-
were functions of these variables. By virtue of the Smith-mately

2n
1+ — =| Bx*+ B*3=0.
Yn

(24)
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FIG. 5. A plot of the form factor at constast(that yielding the

FIG. 4. A plot of the fgrm factor at constagit=0 for 4 from O peak output for ¢ from O to 90° for the case ai=n=1, p=1,
to 180° for the case ai=n=1,p=1, andy=2.0, 20.0, and 200.0. andy=2.0, 20.0, and 200.0.

o2 . =0) wherex,, e[0x,] andx, €[x,,7]. The full width at
fo(Xn, ¢=0)~— B*¥*(y— 1)sin2(§: ) (26)  half maximum (FWHM) is A#,=[cos }(x)—cos (x;)].
2m n We find that

These expressions become exact for all valueg afhenn Ag~13 1/2\/E 29

=n. The angle at which thath order is maximized can be On=1.3y n 29

substituted back into the Smith-Purcell relationship to derive

the angular frequency of the SP radiation for each order The solid angle subtended by each lobe isQ,

=cvy/b in the high-energy limit. Furthermore, knowing the ~sin§,A6,Ad,,

number of periods in the grating, we are in a position to

deduce the width in frequency of each order using the ex- n
AQ ~2.4y 32 [=

pression in Eq(8): (30)

FCEN The total energy in each lobe is,~(q% ey)fn(Xy,d
Aop=4-—. (27) =0)AQ, or " wm

n p2
q> [mn n
£n~0.01y¥*——sir?| - = = (31)
enn 2n n
The next question concerns the angular distribution of the

radiation. We expect, crudely, that at high energy; 1, the ~ Evidently, the radiant energy increases with the 3/2 power of
radiation of each order will become a narrow congiand  the beam energy. The variation in energy with order is such
¢. What is the total energy emitted in each order? Does thighat the maximum output is obtained for the casenefn
energy increase with beam energy? Figures 4 and 5 show thep=1. The energy oscillates with increasing order but is
variation of the form factor wit9 and ¢ for beams of sev-  pounded above by~ 2 Depending on the choice of and

eral energies. The energy is maximized at smaller angles forg, an odd integer less thada, the magnitudes of the ener-
higher energy as expected from H@5). As expected, the  gias in the various orders will be altered accordingly.
energy is also maximized a=0. » As with any periodic radiator, the minimum resolution is
Introduce the following variables to denote the positionsy ) /) ~1/N. Because of the SP dispersion relationship the
of the half_—output points. The implicit definition o_f the half- angular width of the radiated energy lobe described by Eq.
output pointen 11z is fn(Xn, én.12) =7 fa(xn,0). This equa- (29) corresponds to a spectral width Af\/A~1.8y"2. In
tion can be solved analytically. Using the small angle apyactice the larger of these two linewidths will dominate de-

VI. ANGULAR DISTRIBUTION OF RADIATION

proximation, appropriate in this case, pending on the particular parameters of the beam source be-
ing utilized.

n The average power produced by a continuous current can

b 12~0.64y 12/ —. (28)  be approximated by recognizing that the radiation produced

by individual charges sums incoherently when the plasma

wavelength of the beam is much larger than the wavelength
Twice this value yieldsA ¢,. The two half-output points of the Smith-Purcell radiation. In this case the net energy
along @ are defined similarly byf,(x, ,¢=0)=3f.(X,,® production scales linearly with the number of radiattas
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TABLE |I. SP radiation from existing or planned accelerators.

Facility

Dukée? TUMP CIRFEL®  SDALINACY  BNL-ATF® LCLS

[14] [15] [16] [17] [18] [19]
Energy(MeV) 1.2 3 14 38 50 14350
ey (7 mm mrad 35 5 20 2 1 1.5
ro=b/\2 (um) 250 100 350 50 25 0.5
o, (mm/p3 0.3/1 3000/16 3.0/10 1.2/4 0.6/2 0.02/0.067
I (A) 20 0.5 200 15 50 3400
I (mm) 2.2 0.89 3.1 0.44 0.22 0.009
s (mm) 1.1 0.44 1.6 0.22 0.11 0.004
N 51 30 110 420 560 4200
A (wm) 700 130 110 5.9 2.3 0.00032
AN\ 0.16 0.038 0.009 0.002 0.002 0.0002
0 (deg 43 30 15.1 9.3 8.1 0.48
AQ (mSp 390 130 16 4 2 5104
P (mW) 0.5 0.026 22 7.0 710 16108

&The Mark 1l Free Electron Laser Linear Accelerator Driver.

®3 MV Van de Graaff accelerator at the Physics Department of the Technical University, Munich.
“The compact infrared free electron laser.

9The Superconducting Darmstadt Linear Accelerator.

€The Brookhaven National Laboratory Accelerator Test Facility.

"The Linac Coherent Light Source.

opposed to quadratically as would be the case with coherettunch length, and peak current. The calculated quantities are

radiation from a single macrochajgd&he power produced is the grating period and strip width, the number of periods in

the product of the rate at which charges pass the grating arttie grating, the peak wavelength of the output, the angle of

the energy produced by each charBg=1l¢,/q. maximum emission, the solid angle subtended by the main
It should be noted that the output power does not scaléobe of radiation, and the peak power produced.

with the canonical figure of merit, the “normalized beam

brightness” By=1/(me,)?. Instead, the power is propor- VII. CONCLUSIONS

tional to current divided by normalized emittance to the first A theoretical analvsis of Smith-Purcell radiation from a

power. This relationship is a consequence of the geometry of nalysis .

the Smith-Purcell effect. The beam-grating coupling drops‘perfectly conducting strip grating has been presented. The

exponentially with the impact parameter of the charges but gneray per unit frequ_ency and solid angle was derlv_ed_. A
transverse displacement has no effect. By Liouville’s theo-Certaln choice of grating geometry was shown (o optimize

rem, the total phase space area subtended by the beamﬂi]se output energy for a particular order of radiation. In the

conserved. However, the components of the normt:xlize!j"g.hly re_Iativistic limit, it has been shown that the energy
emittance, ey, and ey,, are not conserved individually. emitted in each order scales as the 3/2 power of the beam

Therefore, it is possible to “squeeze” a round beam into arEneray. It has also been shown that the emitted energy is

elliptical cross section in order to increase the vertical bearﬁocused Into & narrow cone at high energy, emerging at an
brightness at the expense of the transverse brightness. lﬁpgle close to th_e Q|rect|on of the t?eam.. The optimal param-
deed, the Smith-Purcell effect is naturally suited to a shee‘la’terS for SP radiation are summarized in Table II.

beam geometry.

To provide a quantitative sense of these results, Table |
lists the operating parameters of a number of existing or The authors gratefully acknowledge the support of the
planned accelerators. The parameters of each electron beam S. Army Research Office under Grant No. DAAD19-99-
are the beam kinetic energy, normalized emittance, radiug,-0067.
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TABLE Il. Summary of SP optimization for a given order

Grating  |—=2xb|n]| Sp=pmb? Na=bypBl(2mey/n])
Angles =cos [ Vy=D)/(y+ 1)Vn/in $,=0 AQ, ~2.4y~¥2\n/n
Output  w,=cyplb Np=2mb/(yB) Aw,=4cey(n/n)/b?
Energy  ¢,~0.01y%%(q?%/ exn?)sird(w/2) (n/n)p]nin

Power P,=le,/q

% is an odd integer such that<2|n|.
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APPENDIX: DERIVATION OF THE TRANSFORMED
IMAGE CURRENT 3K = —(Bc2)g(z:08) o(x)2qyb/(4)

x,t)=—(Bc2)g(z;,0s .

tooth g [b2+y2+ y2(z— Bct)?]32

The induced surface current on the grating is computed by (A5)
first considering a chargg at a distancé above a perfectly

conducting plane. A surface charge develops that is derpig resylt permits the computation of the “transformed”

scribed by image current/ defined in Eq(4). The cross products factor
1 2qb out of 7 and reduce tdux ux z|2=|UX z|?=sirP6. After
a(y,z)=— = m (A1) p;e)r,f((};g"ntiigz) the trivial x integration, and substitutingr

If the charge trajectory is(t) =bX+ Bctz and the conduc-
tivity of the metal is infinite, then the image charge moves j_AQ_b inajw q J'°° dzjw q g(z;0,8)
accordingly. The standard relativistic substitutions are used: U7 I I I T(b2+y2+ 72)312
t'=vy(t—pBcz) and z'=vy(z— Bct). Also, sinceo is the _
charge per unit area and the dimension of length abis Xexp{l—w
Lorentz contractedg— yo. A Dirac 6 function describes c
the confinement of the current to the surfaxe;,0:

T

. (AB)

z
—+ —+ysinésin +zcos€)

neglecting an overall complex phase which has no effect in

9(x)29yb/(4m) _ the calculation oﬂj]z. This relatively complicated expres-
[b%+y?+ y?(z— Bct)?]%? sion simplifies rapidly upon recognizing the integration over
(A2) vy as that of a modified Bessel function of the second kind

20]:
For the problem at hand, the charge is assumed to travel OVt[ar 1

a grating composed of strips of widtharranged with peri-

J(x,y,z,t)=—(Bc2)

odicity I. It is assumed that the image current in this situation »_ sigsinggbo (s E _

) ) L J=u dzex (1— B cosb)

is that calculated for the uninterrupted metal plane consid- wC Bc

ered above where metal is present in strips and zero in the

gaps between the metal regions. This is accomplished by = Ki((w/c)sin@sing b2+ 72) iobr
defining a functiong;,:(z) that is zero in the gaps between x| dr IR exp — :
strips and unity on the strips. Using the unit Heaviside step b+ 7 vBe
function ©(z), define (A7)

. — _ _ _
9(zia,b)=0(z-a)~O(z-b) The remaining integrations overand r separate, the former
1 if a<z<b yielding a simple exponential over the intery&ls] and the
= : (A3) latter another modified Bessel function which reduces to a
0 if z<a or z>h. . . . _
simple exponential functionk,,(z)=e *Jw/(2z). At the

The grating had\ strips and the individual strips are indexed end of the calculations we find
by m which runs from 1 toN. The grating is described by

gtot(z)=2r’}'1:19(z;ml,ml+s). The final expression for the .. 4g%B3c? Sirto [ ws(1— B cosh)
system of source currents due to the passage of the charge |J12= > 2smz( 25C )
over the strip grating is @ (1—pcoso)
2b
- - 8(x)2qyb/(4) X exp{ - —) , (A8)
J(x,y,z,t)=— z)(Bcz . N
(x,y,z,t) Giot(2)(B )[b2+y2+y2(z—ﬂct)2]3’2 e
(A4)

where the evanescent length scale is defined )\lg_y1

Figure 2 illustrates the shape of the induced surface currentss (o/ yBc) 1+ (yB sin@sin¢)?. Physically, the evanescent
By comparison with the definition for the current density length scale comes frork,=i\_*, the component of the

contribution from each tooth, we have wave vector perpendicular to the grating.
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